If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-1.6x^2=0
a = -1.6; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-1.6)·1
Δ = 6.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{6.4}}{2*-1.6}=\frac{0-\sqrt{6.4}}{-3.2} =-\frac{\sqrt{}}{-3.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{6.4}}{2*-1.6}=\frac{0+\sqrt{6.4}}{-3.2} =\frac{\sqrt{}}{-3.2} $
| 4+1x=16-2x | | n(n-1)=45 | | |5-4x|=|2x-13| | | -4(4x+3)=4 | | 1,2x-(1,8x-3,8)=4,25 | | 72+x=-8x+9 | | /-72+x=-8x+9 | | Y=5/3x-4/5 | | 15x+10=-15-20 | | -7b-32=-3b | | 10*3d=73 | | 3*10d=73 | | 2(x+2)=3(x-1) | | 36x-22=40x-78 | | 3e-4e=-5 | | 0.12=x*0.19+(1-x)*0.08 | | y+8+3=16 | | 7u+18=7-3u | | 11/10x+1/10x=2x+1/5+9/10x | | X3-9x2+20x=0 | | 48-y/7=42 | | Y=2(x-4)2+5 | | |x|=12.5 | | 3p+2=6p-12+9 | | |5x-4|-6=-2 | | 2x^2-14x+20=-0,75x^2+6x-9 | | (x-10)(x-12)=0 | | 3m+2/3=5m-4 | | 5^x+6=2^-5x | | 3x-2/4-2x+5/3=1-x/6 | | 5(2x=4)=50 | | 0.73x+x=1 |